

Abstract—Human errors during the software systems

development processes are related with software system failure.
Usually, these kinds of errors are consequence of the way of work of
development team. Although there are a many reliability techniques
to steer software systems development process, the repertory of
models and techniques to deal with humans, the fundamental element
of the process, are very limited. The interplay between Soft Systems
Engineering and Software Engineering must be increasingly present
in organizations that develop software systems. Soft System
Engineering approach helps the software system development team to
coordinate their work processes; it allows the development of a
resilient environment to human error during development process,
and steer the team to the development of software systems with
quality. The Endeavor dimension of the SEMAT kernel has the
essential elements of Software Engineering, and can be extended, to
deal with the human error as early as possible in the software systems
development process. This paper is about Work, Way of Work, and
Team, three essentials elements of the SEMAT kernel, and Soft
System Engineering as a practice that extend the kernel to deal with
human error in the software system development.

Keywords—Soft System Engineering, Software Engineering,
Software Process, Software Reliability.

I. INTRODUCTION
HERE are several organizations in which the development
of software systems is not the main business; nonetheless,

these companies have a department or area that works with
Information Technology (IT). When an IT department defines
a team to a software system development endeavor, it is
necessary to define a way of work that allows both the team
members integration and cooperation, and the understanding
of what must be implemented. Furthermore, the teamwork
deals with the implementation itself and minimizes systems
failures through system validation and verification.

This work was supported in part by the Institute for Technological
Research of São Paulo under project 879505A.

M. J. Simonette is with Knowledge Engineering Laboratory (KNOMA) -
Department of Computer Engineering and Digital Systems (PCS) of Escola
Politécnica da Universidade de São Paulo, São, SP, Brazil. Phone: +5511 30
(910677); +55 11 9 9768 8822; e-mail: marceljs@usp.br.

L. Lago, is with Knowledge Engineering Laboratory (KNOMA) -
Department of Computer Engineering and Digital Systems (PCS) of Escola
Politécnica da Universidade de São Paulo, São, SP, Brazil; also, he is with
Institute for Technological Research of São Paulo, São Paulo, SP, Brazil (e-
mail: llago@ipt.br).

E. Spina is with Knowledge Engineering Laboratory (KNOMA) -
Department of Computer Engineering and Digital Systems (PCS) of Escola
Politécnica da Universidade de São Paulo, São, SP, Brazil (e-mail:
spina@usp.br).

The software system development team coordination must
be done with focus on the delivery of a software system that
achieves both the customer needs and expectations. This kind
of mantra of software system development management can be
reached by a way of work that considers not only the
functional and non-functional aspects of the business demand,
but also promotes an approach to deal with human errors that
may occur during the software system development process.
These human errors - software developer errors - can be
classified in two broad categories [1]:
1) Development error made during analysis, design, and

coding activities.
2) Debugging errors made during attempts to remove faults

identified during verification and validation.
There are several reliability models to software systems, [2],

[3], [4] and [5] are only some examples; nevertheless, the
repertory of models and techniques to deal with software
developer errors are very limited. In any software system
development processes, humans are essential. Despite all the
Software Engineering methods and practices, the software
system development endeavor is still heavily dependent on
human activity, and, as argued by Stutuzke and Smidts [1], a
single error committed by any member of de development
team can inject multiple faults into a software system. Xiong
and Li [6] state that these multiple faults occur because
software systems are nonlinear systems, in which small
changes may bring big impacts to the entire systems.

Soft Systems Engineering offer practices that can enable the
integration and collaboration among IT team members, which
enable the development of a single vision of the different parts
of a system to be developed [7]. It is the vision of the software
system as a whole that promotes the identification of the
system dependability issues in the beginning of iterations of
the work of the software system development endeavor [8],
[9]. This approach also allows team managers to identify some
factors that have influence in developer errors in software
system development processes. Some of these factors are [1],
[10]:
1) Lack of resources, tools, to the team, which can be caused

by insufficient knowledge, or lack of consideration of
proper preconditions or side effects of a decision.

2) Team ability.
3) Time pressure under which team are required to work.
4) Familiarity of the team with the type of system and

business rules.

Extending SEMAT kernel to deal with
developer error

Marcel J. Simonette, Lucas Lago, Edison Spina

T

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 253

mailto:marceljs@usp.br
mailto:llago@ipt.br
mailto:spina@usp.br

Work, Team and Way of Work are present in one of the
three areas of concern that were identified in the Software
Engineering Method And Theory (SEMAT) kernel. They take
part of the things that “we always work with” in Software
Engineering. They are the alphas of the SEMAT kernel
Endeavor context [11]. These three alphas have related to IT
team activities, things to which team members must be
motivated to do, as it is not possible to develop reliable
software systems without having professional and motivated
personnel [12].

This paper is about Soft Systems Engineering through the
life cycle of software systems. A socio-technical approach that
promotes the integration of the people that take part of the
software system development endeavor; looking for a
knowledge construction about the system as a whole, to
support Software Engineering practices and to deal with
human error during software system development process.
This approach contributes to enable IT team to develop
software systems that adds value to the organizations,
contributing to organization performance and efficiency.

II. SEMAT KERNEL – THE ESSENCE
SEMAT kernel is the first answer to a “Call for Action”

[13], a little step in the process of redefining Software
Engineering.

An opportunity identified by a business area of an
organization is a search for solution to the IT department of
this organization. A solution in which the people that work in
the software system development process make use of
Software Engineering and Soft System Engineering practices
to understand what must be done, validate this understanding
and implement the solution. Although there are several
practices to conduct this process, there is a set of essentials
elements that are universal and are present in all the endeavors
to develop high quality software systems. These elements –
called alphas in SEMAT kernel – deal with “things we always
work with” (Fig. 1) and “things we always do” (Fig. 2) in a
software system development process. These elements provide
an integrated set that enables the predictability of the delivery,
and the continuous improvement in the way of work,
communication, and understanding of what, and how, the team
is working in a moment, and what they must to do in the
following project increments [11].

SEMAT kernel does not compete with existing software
system development methods. It is not a new methodology to
software system development. It is an answer to the need of
redefining Software Engineering [13]. Essence is a kernel of
universal elements that are both present in several software
system development methods and that enable project
measurements of progress and health. The kernel was first
published in the SEMAT submission to OMG call: Foundation
for Agile Creation and Enactment of Software Engineering
[14]. More than a conceptual model, the kernel provides:
1) A framework for software system development teams to

think about the endeavor progress and the state of their

efforts.
2) A common basis to discuss, improves, compare, and share

Software Engineering best practices and methods.
3) A framework to software system development teams

assembles practices from different origins, continuously
improving the way of work.

4) A framework for defining metrics that are independent of
practices, to evaluate both the quality of developed
software and the methods used to develop it.

5) And the most important, a way to help software system
development teams to understand where they are, what
they should do next, and where they need to improve.

Fig. 1 “things we always work with” in software system development

process

Fig. 2 “things we always do” in a software system development

process

A. Endeavor Alphas
Alphas are representations of the essential elements that

must be monitored to guide the success of software system
development process. Each alpha has a set of states, and each
state has a checklist that identifies whether the state has been
met. Alphas must be seen together, not in an approach that
considers each alpha individually [11].

The kernel alphas that belong to the Endeavor area of
concern are: Work, Way of Work, and Team. Observing the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 254

Endeavor kernel dimension at Fig. 1, it is noted that the Team
performs and plan the Work, and that the Team applies Way of
Work, which guide the Work (Fig. 3).

Fig. 3 the alphas of the kernel Endeavor area of concern and

their interrelationships

B. Endeavor Kernel Dimension And The Software Inherent
Complexity

IT team members are professionals that are under pressure
both to be efficient and to produce software systems that meet
stakeholders need; they must address the identified business
opportunity. There are different ways of work that these
professionals can use to successfully fulfill their mission.
However, in this endeavor, they must not forget that the work
to be performed depends on understanding the requirements of
the problematic situation that appears as an opportunity.

Whichever the Way of Work applied by the Team, there is
an issue present in all software system development endeavors:
the identification of the problematic situation, the opportunity
and the requirements that such problematic situation brings.
This identification process is essentially an activity related to
people talking with people [15], [16], and [17].

Team members work with information and knowledge,
obtained through interactions with stakeholders, to understand
the opportunity and requirements. In this process, and
especially in the implementation of the software system, these
team members need to work in a focused way to deal with the
underlying complexity of the software system development
process [18], [19]. This complexity has also been highlighted
by Frederick Brooks in his classic 1987 article: “No Silver
Bullet: Essences and Accidents of Software Engineering” [20],
in which he points out that due to the large number of distinct
elements that are present in the software system development
process, the development of this type of system is an activity
that is more complex than any other type of man-made
construction. As evidence of the amount of elements that exist
in the software system development process, Clarke &
O`Connor [21] argue that there are 40 factors and 170 sub-
factors that are present in software system development
context.

C. Endeavor Dimension And Its Relationships
Fig. 4 shows all the relationships of the SEMAT kernel

alphas that belong to the Endeavor area of concern:
1) Work has relationship with Requirements – Opportunity –

Software System.
2) Team has relationship with Software System –

Stakeholder.

3) Way of work does not have relationship with alphas of
other dimension than Endeavor. However, it is an
essential link between Team and Work, and is under
direct influence of the factors mentioned by Clarke &
O`Connor [21].

Despite the apparent simplicity of the relations between the
alphas shown in Fig. 4, there are some challenges in these
relations:
1) The cooperation among Team members.
2) The cooperation among Team members and stakeholders.
3) The developer error.

These relationship and the attention to developer error are
essential to IT team realize a work that add value to the
organization.

Fig. 4 alphas of kernel Endeavor dimension and their relationship

with other kernel alphas

III. SOFT SYSTEMS ENGINEERING
The Cartesian way of dealing with a problem is to divide it

into smaller and simpler parts, as much as possible. This is the
most successful technique used by Engineering, and this
approach enables humanity to reach the current state of
technology. However, even with the successes of this
approach, there are problems in which this approach cannot
succeed; Soft System Engineering uses System Thinking to
deal with these problems. Hitchins [7] argues that System
Thinking caught the attention of engineers when they realized
that the Cartesian approach have difficulties to deal with
systems that include people.

According to Senge [22], Systems Thinking is a discipline
to see a system in its totality, a kind of framework to view the
system components interrelationship more than to view the
components, to view the system patterns of change more than
to view system static images. It is an essential approach for
effectiveness of environmental management, appropriate
leadership and to keep well-regulated interpersonal relations in
an enterprise [23].

Hitchins [7] states that Soft Systems Engineering uses
Systems Thinking to understand the nature of the problem,
seeking practical experiences and interactions with the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 255

problem, trying to understand it and proposing solutions that
may not solve it, but can provide a response that improves the
problem understanding, allowing the development of a
solution which is the best at the moment.

System engineering focuses on a variety of elements,
analyzing, designing, and organizing those elements into a
system that can transform information and control it [24].
Using a Soft Systems Engineering approach, that is more
qualitative than quantitative and that make use of past
experience, IT team members can have a practice at the
Endeavor context that enables them to deal with developer
error and team relationship in software system development
process. The human dimension in a software system
development process has a complexity that demands team
managers to adapt their practices to how people responds to
strategies to reach the states of Endeavor essentials alphas of
SEMAT kernel.

A. Soft Systems Methodology
Soft Systems Methodology is one of the methods used by

Software System Engineering to address complex issues and
problems related to the presence of people in unstructured
(problematic) situations [7].

Soft Systems Methodology promotes the agreement of the
multiple problem views and multiple interests of the people
with interest in the problematic situation, and may be
represented by a seven-stage model. Stages one and two
explore the problematic situation and express it in a rich
picture. Stage three is the root definition of the relevant
systems describing six aspect of the problem, which are called
CATWOE, they are: Customers, Actors, Transformation
process, Worldview, Owner, and Environment constrains. In
stage four, the conceptual models of the relevant systems are
developed, and, in stage 5, the conceptual model is compared
with the perceptions of the real situation. In stage six, an action
plan is developed for the changes, which are feasible and
desirable; and in stage seven, the action plan is implemented.
As a method developed from the Soft Systems Thinking, Soft
Systems Methodology does not produce a final answer to the
problematic situation, it seeks to understand the problem
situation and find the best possible response [7], [25].

IV. EXTENDING SEMAT KERNEL
Although the developer error during software system

development process may happens independently of the
development method adopt by the software system
development team, it is not a concern present in the “thing we
always work with” or “things we always do” of the SEMAT
kernel. This absence is not a problem of the kernel concept.
The kernel is defined as the essentials elements of Software
Engineering, not as “all elements” a team need. However,
different kinds of software endeavors have different risks and
constrains, and developer error can brings risks to software
system development endeavors.

The SEMAT kernel can be scaled to address challenges
presents in any kind of software system development

endeavor, providing guidance beyond what the kernel provides
[11]. This additional guidance comes in forms of practices,
which are extensions to the kernel.

The existence of people in the Endeavor context is a strong
characteristic of this context, in which relationship among
team members occurs. Soft Systems Methodology approach
can provide details that team members might need to have a
common understanding of how to conduct the software system
development to develop a resilient environment to developer
error during development process.

SEMAT kernel has a simple language that provides a way to
describe practices [11]. The use of Soft Systems Methodology
as a practice describe by the kernel language is a way that is
easy for inexperienced and experienced team members apply
Soft Systems Methodology in the endeavor context.

A. Soft Systems Methodology Practices
The purpose of this practice is to ensure that the team has a

common understanding about software system development
endeavor to develop a resilient environment to developer error
during development process.

In the Endeavor context the Soft Systems Methodology
practice can be applied in terms of “things to work with” (Fig.
5) and “things to do” (Fig. 6). Considering the “things to work
with”, this practice provides guidance to clarify the software
system development environment to team members. An action
plan to steer the team relationship, and actions to a resilient
environment, is the work product attached to the Way of Work
alpha. And on “things to do”, this practice provides guidance
on how to conduct the several activities of the Soft Systems
Methodology, namely:
1) Agree on Conceptual Model through the execution of the

first five stages of the Soft Systems Methodology. It
includes the build of a picture of the environment and
identification the core activities required to develop a
resilient environment through the comparison of ideal
model of the environment with the team perception of the
real endeavor environment.

2) Action Plan development trough the execution of Soft
Systems Methodology stage six, in which an action plan is
developed for the changes in environment, which are
feasible and desirable.

3) Action Plan implementation trough the execution of 7 of
the Soft Systems Methodology.

4) Observe situation as a way to identify the necessity of a
new cycle of the Soft Systems Methodology to control or
to improve some action in the environment.

The mapping from Way of Work alpha states to activities of
the Soft Systems Methodology practice is showed at Fig. 7.
This mapping guides team members in what to do to achieve a
particular Way of Work state. For example, the practice
recommends conduct the activity Action Plan development
(through execution of Soft Systems Methodology stage 6) to
achieve the Way of Work Foundation Established state.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 256

Fig. 5 Soft Systems Methodology practice: Things to work with

Fig. 6 Soft Systems Methodology practice: Things to do.

Fig.7 using Soft Systems Methodology practice: Mapping Way of

Work alpha states to activities

V. CONCLUSION AND FUTURE WORK
It is impossible to predict all the developer errors that can

occur in software system development process. The different
fashions of Software Engineering methods and practices do not
deal effectively with the inherent complexity of software
system development because they are based on code
development, without considering the inter-relationship
between:
1) Technical components (hardware & software).
2) Issues related to the organization or the business process.
3) Issues related to the relationship between the team

members.
4) Issues related to the relationship between team members

and stakeholders.
5) The real intentions of software system use by the users.

The Soft System Engineering systemic approach enables the
IT team to understand what has to be developed, considering
the various inter-relationships, and inspire a socio-technical
environment in which the IT team objective is more than build
a software system, is to add value to the organization business.

The authors of this paper are conducting researches about
SEMAT kernel alphas extensions to offer an answer that
considers the inherent complexity of software system
development process, in which the deal with developer error
has a strong presence.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 257

REFERENCES
[1] M. A. Stutzke and C. S. Smidts, “A stochastic model of fault

introduction and removal during software development,” IEEE
Transactions on Reliability, vol. 50, no. 2, pp.184-193, Jun 2001. Doi:
10.1109/24.963126

[2] J. Musa, Software Reliability Engineering: More Reliable Software,
Faster, and Cheaper. 2nd ed., Bloomington: Author House,
Bloomington, 2004.

[3] K. Rekab, H. Rhompson, H., and W. Wu, “A multistage sequential test
allocation for software reliability estimation,” IEEE Transaction on
Reliability, v. 62, no. 2, pp. 424-433, Jun 2013. Doi:
10.1109/TR.2013.2259195

[4] A. Amin, L. Grunske, and A. Colman, “An approach to software
reliability prediction based on time series modeling,” Journal of
Systems and Software, vol. 86, no. 7, pp. 1923-1932, Jul. 2013. Doi:
10.1016/j.jss.2013.03

[5] H. Okamura, T. Dohi, and S. Osaki, “Software reliability growth models
with normal failure time distributions,” Reliability Engineering &
System Safety, vol. 116, pp. 135-141, Aug. 2013. Doi:
10.1016/j.ress.2012.02.002

[6] J. Xiong and L. Li, “Nonlinear and Quantitative Software Engineering
Method Based on Complexity Science,” in Recent advances in
Computer Science: Proceedings of the 17th International Conference
on Computers (part of CSCC '13), Proceedings of the 1st International
Conference on Artificial Intelligence and Cognitive Science (AICS '13),
Proceedings of the 1st International Conference on Innovative
Computing and Information Processing (INCIP'13), O. Nakov, M.
Voznak, V. Vasek, and A. Naaji (Eds.). Rhodes Island, Greece July 16-
19, 2013. WSEAS Press, 2013. ISBN: 978-960-474-311-7.

[7] D. K. Hitchins, Systems Engineering: A 21st Century Systems
Methodology. Chichester: John Wiley & Sons, 2008.

[8] J. C. Laprie, “Dependable computing and fault tolerance. Concepts and
terminology,” in Proceedings of 15th IEEE International Symposium on
Fault- Tolerant Computing. IEEE, Ann Arbor, MI, pp. 2–11, 1985. Doi:
10.1109/FTCSH.1995.532603

[9] A. Avizienis, J. C. Laprie, and B. Randell, “Basic concepts and
taxonomy of dependable and secure computing,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.
Doi: 10.1109/TDSC.2004.2

[10] J. Rasmussen and K. J. Vicente, “Coping with human errors through
system design: implications for ecological interface design,”
International Journal of Man-Machine Studies, vol. 31, no. 5, pp. 517–
534, Nov. 1989. Doi: 10.1016/0020-7373(89)90014-X

[11] I. Jacobson, P. W. Ng, P. E. McMahon, I. Spence, and S. Lidman, The
Essence of Software Engineering: Applying the SEMAT Kernel. New
Jersey: Addison-Wesley Professional, 2013. ISBN: 978-0321885951.

[12] D. Kumlander, “Key Success Factors in Personnel Motivating Projects,”
in Proceedings of the 7th WSEAS International Conference on Applied
Informatics and Communications (AIC`07), vol. 7, pp. 200-205,
Athens, Greece, Aug. 2007.

[13] I. Jacobson, P. W. Ng, P. E. McMahon, I. Spence, and S. Lidman, “The
Essence of Software Engineering: The SEMAT Kernel, ” Queue 10, vol.
10, no. 10, Oct. 2012. Doi: 10.1145/2381996.2389616

[14] OMG - Foundation for Agile Creation and Enactment of Software
Engineering RFP. Available: http://www.omg.org/cgi-bin/doc?ad/2011-
6-26

[15] D. C. Gause and G. M. Weinberg, Exploring Requirements: Quality
Before Design. New York: Dorset House Publishing Co., 1989.

[16] K. Holtzblatt and H. R. Beyer, “Requirements gathering: The human
factor,” Communications of the ACM, vol. 38, no. 5, pp. 30-32, 1995.
Doi: 10.1145/203356.203361

[17] N. Maiden, “Trust Me, I'm an Analyst,” IEEE Software, vol. 27, no. 1,
pp. 46-47, Jan.-Feb. 2010. Doi: 10.1109/MS.2010.22

[18] T. Demarco and T. R. Lister, Peopleware: productive projects and
teams. 2nd Ed. New York: Dorset House Pub. Co, 1999. ISBN: 978-
0932633439.

[19] M. Poppendieck and T. Poppendieck, Lean software development: an
agile toolkit. New Jersey: Addison-Wesley, 2003. ISBN: 978-
0321150783.

[20] F. P. Brooks, “No Silver Bullet: Essences and Accidents of Software
Engineering,” IEEE Computer, vol. 20, no. 4, pp.10-19, 1987. Doi:
10.1109/MC.1987.1663532

[21] P. Clarke and R. V. O’Connor, “The situational factors that affect the
software development process: Towards a comprehensive reference
framework,” Information and Software Technology, vol. 54, no. 5, pp.
433–447, 2012. Doi: 10.1016/j.infsof.2011.12.003

[22] P. Senge, The Fifth Discipline: The Art & Practice of the Learning
Organization. New York: Currency Doubleday, 2006.

[23] U. Ogrin and D. Kralj, “Sustainable business and environmental
Indicators,” WSEAS Transaction on Communications, vol. 8, no. 3, pp.
331-342, Mar. 2009. Available: http://www.wseas.us/e-
library/transactions/communications/2009/29-164.pdf

[24] E. G. Gallardo, J. O. Hernández, and S. A. De Los Rios, “Knowledge
representation of acquisition and control systems with graphical
programming using UML,” in Proceedings of 6th WSEAS Int. Conf. on
Algorithms, Scientific Computing, Modeling and Simulation
(ASCOMS`04), Cancun: Mexico, May 2004, ISBN 960-8052-98-X.
Available: http://www.wseas.us/e-
library/conferences/cancun2004/papers/485-425.pdf

[25] P. Checkland, “Soft Systems Methodology: A Thirty Year
Retrospective,” Systems Research and Behavioral Science, vol. 17, pp.
S11–S58, Nov. 2000. Doi: 10.1002/1099-1743(200011)17:1+<::AID-
SRES374>3.0.CO;2-O

Marcel J. Simonette was born in São Paulo, Brazil, in 1965. Currently, he is
Ph.D. student at Knowledge Engineering Laboratory (KNOMA) - Department
of Computer Engineering and Digital Systems (PCS) of Escola Politécnica da
Universidade de São Paulo. He holds a degree in Electrical Engineering,
1991, and a M.Sc. in Electrical Engineering (focused on system engineering
at sociotechnical systems), 2011; all his titles were obtained in Escola
Politécnica da Universidade de São Paulo, São Paulo, Brazil.

He has experience in European Commission Projects as team member in
BELIEF (FP6), BELIEF 2 (FP7), and VertbrALCUE (Alfa3). His research
areas are the following: Software engineering, requirements engineering,
system engineering, and sociotechnical systems.

Lucas S. M. Lago was born in Franca, São Paulo, Brazil, in 1987. Graduated
in Computer Engineering at University of São Paulo, Brazil in 2010 and is on
the master degree program at the same university.

He is an assistant researcher at the Institute for Technological Research of
São Paulo, Brazil.

Edison Spina was born in Jundiai, SP Brazil, in 1958. Currently he is
Professor at Escola Politécnica da Universidade de São Paulo. He holds
degree in Electrical Engineering, 1981, M.Sc. in Electrical Engineering,
1990, and PhD. in Electrical Engineering, 1988; all his titles were obtained at
Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil.

He has experience in Electrical Engineering with emphasis in Human
Factors in Reliability and projects working mainly on quality and reliability,
technological convergence and heterogeneous networks, systems engineering,
and telecommunications engineering. Also, he has experience in European
Commission Projects as task leader in INSTINC Project (FP6) and as
Brazilian team coordinator for BELIEF (FP6), BELIEF 2 (FP7), and
VertbrALCUE (Alfa3).

Dr. Spina is member of the International Relations Committee of Escola
Politécnica da Universidade de São Paulo; counselor of the Brazilian Bar
(Lawyers) Association (OAB) Science and Technology Committee; a
founding member of the iRIOT (Research Group of Interdisciplinary
Research for the Internet of Things); member of the IEEE R9 South Brazil
Board.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 258

http://dx.doi.org/10.1109/24.963126
http://dx.doi.org/10.1109/TR.2013.2259195
http://dx.doi.org/10.1109/FTCSH.1995.532603
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1016/0020-7373(89)90014-X
http://dx.doi.org/10.1145/2381996.2389616
http://www.omg.org/cgi-bin/doc?ad/2011-6-26
http://www.omg.org/cgi-bin/doc?ad/2011-6-26
http://dx.doi.org/10.1145/203356.203361
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1016/j.infsof.2011.12.003
http://www.wseas.us/e-library/transactions/communications/2009/29-164.pdf
http://www.wseas.us/e-library/transactions/communications/2009/29-164.pdf
http://www.wseas.us/e-library/conferences/cancun2004/papers/485-425.pdf
http://www.wseas.us/e-library/conferences/cancun2004/papers/485-425.pdf

